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Partial blocking of the transport surface under the stagnant (Nernst) fayer is simulated by periodically
alternating bands of perfectly insulating zones and active zones with a constant potential of the driving
force. The numeric solution of the corresponding two-dimensional clliptic problem is represented by a
simple empirical correlation for the transfer cocfficients. The result is interpreted in terms of a simple
clectrochemical problem about limiting diffusion currents at clectrodes with non-uniform surface activity.

In solving problems of charge, heat and mass transfer between a homogencous medium
and a wall, the usual assumption is that the interface is a homogencous, two-dimensio-
nal continuum. For a negligible interface resistance or for a sufficiently rapid surface
reaction at the interface the clectric poteatial, temperature and concentration at the
whole interface are considered known and constant. This is, however, at variance of
reality, c.g. when clectric current or heat passes between two confacting coarse blocks
of a solid material or when a catalytic reaction proceeds at the solid surface. The
fraction of the active part of the surface may be even less than 1% of the geometric
interface area.

The notion of partial blockade of the surface was introduced in electrochemistry to
clucidate the drop in activity of solid electrodes in the limiting diffusion current regime.
Landsberg and Thicle! start from the Nernst model of stagnant diffusion layer and they
mode] the non-uniform surface activity by assuming the existence ol circular active
zones surrounded by incrt regions. The model involves three parameters: thickness of
the diffusion layer, radius of fictitious circular zones with an active centre which occu-
py the whole electrode surface, and the fraction of the active part of the surface in the
fictitious circular region. An obvious drawback of the model is the assumption of
complete occupation of the surface by circular regions, however this makes possible to
use the known solution of the two-dimensional problem of electric current conduction
through a cylinder terminated by a circular contact®. Also Levart and coworkers® start
from the model of Nernst stagnant Jayer. Their model of non-uniformly active surlace
consist of a regular arrangement of square-shaped active zones and the model para-
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meters again characterize the diffusion thickness, the period of the inhomogenceites, and
the fraction of the active part of the surface. The problem of three-dimensional diffu-
sion in a stagnant medivm is solved by using Fourier series whose coefficients are
determined in nodes of the square grid on the transport surface. Drawbacks ol this work
are 100 large steps of the grid on the clectrode surface (at most 15 x 15 points per
period) and limitation to macroheterogencous surfaces with a heterogeneity period
cqual or larger than the diffusion thickness. The two works mentioned were criticized
by Filinovskii*, who considered the notion of Nernst stagnant layer as doubtlul, and
proposced a diffusion layer approach of the transport model involving the influence of
convection at the expense of neglection of longitudinal diffusion.

The present work is based on the Nernst stagnant layer approach together with the
notion of additional dilfusion path, formulated implicitly by Smythe®. The purpose is to
solve a simple model of a partially blocked surface a one-dimensional periodic structu-
re of active and inactive bands. The criticism of Filinovskii is evaluated in the Discussion.

THEORETICAL

The geometry of the transport modcel considered is illustrated in Fig. Ta. We assume
that the transport resistance between the wall and the streaming liquid is concentrated
in a layer of constant diflusion thickness, 8, on whose outer boundary, B, the concentra-
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Diffusion layer on periodically blocked surface: @ Geometrie parameters: A active surface, U blocked

surface, 8 symmetry planes. Shaded area denotes integration domain of the concentration field. b Grid for

integration of harmonic equation: O inner grid points (with unknown € values). @ points with known

boundary values of €, © @ @ points at boundaries with mirror symmetry
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tion is cqual to that in the bulk of the streaming liquid, ¢ = cp. Partial blockade of the
surface is simulated by periodically alternating bands of a perfectly permeable interfa-
ce, A, of known constant concentration, ¢ = ¢4, and ol a perfectly blocked interface, U,
with zero permeability, d,¢ = 0. The period of this structure is A, and the fraction of the
active arca is « = A/(A + U) = 1.

Owing to periodicity and symmetry of the concentration ficld, it is sufficient to
consider the integration domain denoted in Fig. 1a by shading. By using dimensionless
variables (cf. Symbols), the problem can be lormulated mathematically as follows:

BRxC + 05,€ =0 for 0<X<1, 0<Z<l/x (N
C =1/ for 0<X<l, Z=1/x 2a)

C=0 for 0<X<a, Z=0 (2b)

a,C =0 fora<X<l, Z=0 (2¢)

IxC = 0 for X=0, 0>Z>1/x @2d)

o0xC =0 for X=1, 0>Z>1/k. (2¢)

Thus, we have to deal with a two-dimensional elliptic problem with two geometrical
simplexes, 0 < a < 1, « > 0. For a fully active wall, ¢« = 1, the solution is obviously

c=2Z. 3)

In the general case, o < 1, no analytical solution has been found. Owing to the mixed
character of the boundary conditions, no conformal mapping is known which would
transform the given problem into an ordinary differential cquation. Therefore, the solu-
tion was carricd out numerically. To find the total diffusion current, the following pro-
cedure was chosen. The curve integral

E = [(3,CdX - 0xCd2), (4)
L

where L denotes an arbitrary curve scparating the active zone from the outer boundary
of the diffusion layer, is constant as a result of the properties (1), (2¢ — 2¢). It is appa-
rent that E is equal to the ratio of the diffusion current — a particular case 1o that fora
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fully active wall, « = 1. The accuracy of the solution was tested by comparing the
values of £ oblained by integration along several suitably chosen curves.

Numerical Solution

The given problem was solved by the finite-difference method. The values of Clat the
grid points for Z < 1/x are defined on an isotropic rectangular grid, 22V - 20 = X, | - X,
= /M,

a = CX, 2, X, =i/M, 22 = j/N, OsisM, 0O0sj=sN. (5)

1
The values in the corresponding grid points can therelore be caleulated according Lo
the usual second-order difference scheme for harmonic equation

= 2@ e e L ). (©)

For k > 1, i.c. for surface non-uniformity with a long period compared to the diffu-
sion layer thickness (case of a macroheterogencous blockade), we have N < M with the
given choice of the grid steps. We will be concerned mainly with the micro-
heterogencous blockade, kK << 1, in which case the use of an cqually spaced grid would
result in a too high total number of grid points with respect to the required grid density
near the active surface (ic. for a given value of M). This obstacle can be climinated,
with regard to the asymptotic lincar concentration profile for Z - 1/x according to Eq.
(3), by the choice of an unequally spaced grid for Z > 1. Thus, for 1/x > 1 + /M, the
interval 1 = Z < [I/x was bridged by a single step as shown in Fig, 1b. The
corresponding formula for the calculation of the grid point values forj= N (Z = 1) is

cN

[(L+B)(CX +CN, )+ 2RRCY 1+ C¥=1)]72(1 + R)7, (7)
where
p = @N-Z8-NH(Z¥ 1 -Z% = Mk -1 < 1 (9

and CX¥* = 1/x in accord with the boundary condition (2a).
In the lateral colunins, i = 0 and { = M, we use the synuwetry relations 1o climinate
the grid point values outside the integration domain

Cj—] = (i, CMH = CM-J (‘))

and the grid point values on the boundary are calculated according to Eqs (6) and (7).

Thus, a system of M(M + 1) cquations ol the type (6) and (7) must be solved. The
solution was carricd out by iterations using the superrelaxation method, based on the
relationship
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(Ch = (O + (1 =5) (Cyy - (10)

new new

As usual with problems of the boundary layer theory, the system of equations solved
behaves as a “stiff” system. To increase the rate of convergence at points ncar the outer
boundary of the diffusion layer, it was therefore necessary to usce extremely high values
of the relaxation coefficient, 1.9 < s < 1.999. The itcrations were substantially acce-
lerated by gradual halving of the grid with lincar interpolation of the grid point values.
The maximum grid dimension, conditioned by simple addressing of the compuler
within onc memory scction, was limited to M = 120, i.c. more than 14 000 grid points.
The program was written in TURBO-Pascal and a PC/XT type computer with an
arithmetic coprocessor was used. The grid point values were stored as 4-byte real
variables of the type single. About 200 — 2 000 iterations were necessary o oblain
stable values of the local gradients to 4 — 5 valid digits, and the time necessary for the
calculation of onc variant was 1 — 200 min.

The retardation factor £ defined by Eq. (4) was calculated from the concentration
gradients in cach internal row of the grid, 1 sj s N - 1t

M= _]_ j+ ! i~ 1 j+! [~ ] lMﬁl j+ ) j-1
Bl = (G- O+ O - O )+22(q -cith. (11)

=1

The value of £ for j = N = 2 converged most rapidly 1o a conslant value during
iterations and gradual halving of the grid. The found values of EN = 2 for the smallest
grid steps, M = 60 and 120, were in mutual agreement (o 3 — 4 valid digits. These
values are summarized in Table I and represent the main result of this work.

TaprLi |
Values of retardation factor 7 = E(x. «)

o
K

0.750 0.500 0.250 0.125 0.050 0.025
2 0914 0.713 0.471 0.335 0.249 0.197
1 0.954 0.827 0.624 (1484 0.387 0.317
0.5 0.979 0.904 0.763 0.647 0.537 0.482
0.2 0.991 01.960) 0.890 0.816 0.742 0.702
0.1 0.996 0.930 0.941 0.906 0.852 0.827
0.05 0.998 0.990 0.971 (.949 0.919 0.905
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Analytical Approximations of the Concentration Field

The most interesting are such situations in which the surface structure can be consi-
dered as microheterogencous and strongly blocked, ic. k < 1, « << 1. The charac-
teristic features of the concentration ficld are then apparent from Figs 2 and 3,
corresponding to numerical data fork = 0.1, « = 0.25, E = 0.941.

The whole integration domain, 0 < X < 1, 0 < Z < 1/k, can be divided into three
subdomains:

In the outer diffusion layer, Z > 1, the concentration ficld is sufficiently smoothed
out by longitudinal diffusion, 95C << 9,C, and it is therefore onc-dimensional with a
constant gradient cqual to E:

C ~ (-Eyx +EZ. (12)

The lincar concentration profile according to Eq. (12) is shown in Fig. 3 by the
dotted lince.

In the region adjacent to the active surface, the concentration ficld is close to the
course given by the solution of a harmonic cquation with constant concentrations at the
active surface and at a confocal clliptical eylinder® corresponding to the outer boundary
of the diffusion layer:
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Concentration ficld for the case of v = 0.1, « = Normalized concentration profiles. The meaning
(1.25: Solid lines denote numerical results for M. of the particular lines is the same as in Fig. 2

N = 120, dashed lines correspond to analytical
approximation close to the active surface. dotted
line to analytical approximation close to outer
limit of the boundary layer
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C = alnfo + (07 =17, (13)

where 0 and t are orthogonal curvilincar coordinates of clliptic cylinders? with foci at
the points Z = 0, X = = ¢, i.c.

X = ol Z7 = (0= 1) (1-1°) (74

and « is a constant depending on the boundary conditions beside the active surface. It
can be found from the condition that the concentration ficlds (/2) and (/3) give the
same values ol the total diffusion current, i.c. parameter £ in Eq. (4):

a = 2(/7. (15)

By comparing the approximate representation (/3) with the numerical solution for
K < I, a0 < 1 we can conclude that the approximate solution represents satisfactorily the
concentration ficld in the region of C < 0.6, corresponding approximately to a quarter-
circle with centre X = Z = 0 and radius «. In Fig. 2 are shown the lines of constant
concentration according to Eqs (13) and (/15).

Between the two asymptotic regions mentioned there is a transitory region, where the
concentration profiles are smoothed out as a result of interactions of periodically placed
active bands. The character of this transition is also apparent from Fig. 2.

RESULTS AND DISCUSSION

The values of £ = E(x, o) in Table Lare equal to the ratio of the transfer cocfficient, &,
under given conditions to its value for a fully active surface, ky = D/O (« = 1). The
tabulated values are for K < 1 represented by the semiempirical function

E(k, ) = 1/[1 + 0.0k(1 =) In(1/c1)] (16)

with an accuracy to 0.2%. On introducing the additional diffusion path, /, for smoothing
out the concentration ficld by longitudinal diffusion, Eq. (76) can be rewritten as

k/ky = o0/(0 + 1), 17)

where
[ = 0301 =) In(l/w). (18)
The additional diffusion lIength, /) is of the same order of magnitude as the distance
between two neighbouring active zones, A(1 — «). I the latter quantity is sulliciently
small, then the additional diffusion resistance becomes negligible even il the active
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zones participate very littie on the whole transport surface, o << 0.1. In other words, an
estimate of the scale A(1 = «) is necessary il the effect of partial blockade is 1o be
estimated, since the transport near the boundaries between active and inert surface
zones is controlled by longitudinal diffusion.

It should be noted that the above analysis, which is formally limited to a stagnant
diffusion layer of constant thickness, can also be used to estimate additional diffusion
resistance in convective diffusion between a streaming liquid and a micro-
heterogencously blocked convective clectrode, A(1 - «t) << d. This can be substantiated
as follows. The influence of microheterogencities on the concentration profiles is,
according to the above analysis, equalized in an adhering layer of thickness roughly
equal to A(1 = «) (Fig. 2), hence much smaller than d. The influcnce of convection on
the concentration field in this region, z << 0, is represented with a sulficient accuracy
by the Nernst diffusion thickness 8: ¢ = (¢ = ¢4)2/0. 1t can therefore be expected that
the correction for the additional resistances in the form of Eq. (17) can be used with a
moderate accuracy even in the case of convective diffusion. Except for so-called
uniformly accessible configurations, the quantities d and E must be understood in a
local sense, since the thickness of the diffusion layver depends on the distance from the
leading cdge® .

A drawback of our model is doubtlessly its one-dimensional structure. Sample calcu-
lations, however, allow us to conclude that the one-dimensional model gives quali-
tatively the same results as two-dimensional models of surface inhomogencity ', il a
given diffusion thickness 9, fraction of active surface «, and distance between active
zones (1 = «) are considered. As long as adequate methods for independent determi-
nation of the phenomenological parameters A, « will not be found, minor qualitative
deviations between the two models can be tolerated.

The published analyses of the effect of non-uniformly active surface on convective
diftusion, based on the concentration boundary layer approach®” with negligible cffect
of longitudinal diffusion, can only be adequate in cases where the partial blockade
measure, A, is comparable with the local diffusion thickness, o, or is larger. It is
known™ that for convection electrodes of length equal to or smaller than (YD/y)"~ the
longitudinal diffusion is the controlling transport mechanism, the effect of longitudinal
convection is negligible, and the concentration boundary layer approach is therelore
inadequate. For convection clectrodes under common conditions, c.g. rotating disc

clectrode or electrodiffusion friction sensors, we have D = 107 m* s and y = 10% 57!,
henee a prevailing effect of longitudinal diffusion on equalizing the influcnce of surfa-
¢ inhomogenceity on the concentration profile can be expected already for A< 10 pum.
The model of the boundary layer type is adequate for nonuniformities of Iength larger
than 10 wm, c.g. in analysis of the influence of insulating inscrtions between the

segments of direction-sensitive clectrodiffusion friction sensors’ or velocity sensors!?.
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CONCLUSIONS

To judge the influence of non-uniform catalytic activity or transport resistance of the
surface on the total intensity of charge, heat or mass transfer, it is not sufficient to know
only the fraction of the active surface «. Another important factor is the characteristic
non-uniformity period A in relation to the local diffusion thickness d.

Macroscopic surface heterogencities, whose dimensions A are equal to or larger than
the diffusion thickness, &, or the internal measure of longitudinal diffusion, (‘)D/y)”z,
must be distinguished from microscopic heterogenceities, which are overlapped by the
concentration boundary layer, A(1 = «) < 8, (1 = «) < (9D/y)'". In describing the
infTucnce of macroscopic heterogencities, use can be made of the concentration bound-
ary layer approach, while in the case of microheterogencities the influence of tangential
diffusion components must be taken into consideration.

Numerical solution of the problem of lincar periodic microheterogencities leads to a
practically applicable correlation Eqs (16), (/7).

SYMBOLS
a parameter of asymptotic solution, Fgs (13). (15)
¢ concentration
CA concentration at the active surface
B concentration in the bulk of the liquid
« normalized concentration N"(c = cA(c = ¢A)
D diffusivity
I retardation factor, Eq. (/). equal to k/ko
k local transfer cocfficient
ko value of & for fully active surface
! additional diffusion thickness., Fq. (17)
M. N numbers of grid steps (Fig. 1b)
X length coordinate
X dimensionless longitudinal coordinate, equal 1o 2 x/n
: normal coordinate
4 dimensionless normal coordinate, equal to 2 2/
o fraction of active surface
v veloeity gradient at the wall
N diffusion thickness for completely active surface
K normalized distance between active centres, equal to 2720
s distance between active centres on surface
a, T orthogonal curvilinear coordinates of clliptic cylinder
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